Dear user,
Welcome to Zeramex.

The Zeramex XT implant system is an innovation in the family of two-piece, reversible screw-in and 100% metal-free ceramic implants.

The root-shaped design of the Zeramex XT implants achieves high primary stability and offers high prosthetic flexibility thanks to its unique internal connection.

The uncomplicated portfolio offers all the options to choose from. Find out all about the completely digital workflow for the Zeramex implant systems today. Improve the experience of your customers and make your own job easier.

Our experts will be glad to help you if you have any questions.

Zeramex Hotline
Tel. 00800 93 55 66 37
(toll-free from a landline in Germany, Austria, and Switzerland)
info@zeramex.com

Zeramex Digital Solutions
Tel. 00800 04 00 13 33
(toll-free from a landline in Germany, Austria, and Switzerland)
digitalsolutions@zeramex.com

Contents

Information
4 System overview
8 Case planning in 5 steps
10 Surgical tools
12 Sterilisation and instrument care
14 Technical information

Surgical phase
18 Planning the insertion depth
20 Drilling protocols
25 Handling

Prosthetic restoration
28 Soft tissue management
28 Temporary restoration
29 Digital impression taking
30 Conventional impression taking
32 Prosthetic process
33 Prosthetic tools
34 Screwed connection
38 Cemented connection
39 Platform switching
40 CAD/CAM workflow
42 Zeramex Digital Solutions

44 Zeramex Docklocs® abutments
46 Technical data for abutments
47 Grinding standard abutments
48 Zeramex XT screws

Range
51 Range

Note
64 General Information
65 Contact

Caution!
The Zeramex XT system is not compatible with previous Zeramex T generations. If you have any questions or concerns, please don’t hesitate to contact us: Tel. 00800 93 55 66 37
System overview

The system for all common indications, particularly well suited for front tooth restorations.

Biocompatible tools

Zeradrill
The biocompatible reusable drill with carbon coating (DLC)

Zeratap

Surgical Kit

XT48850

Prosthetic Kit

XT48860

Colour coding and sizes

Example of implant
Regular Ø4.2 × 14 mm

Imaging and Connection Tools

Surgery

Implant
Pick-up

Prosthetic

Healing cap
Prosthetic key

System overview

XT

<table>
<thead>
<tr>
<th>Implants (Ø endosseous)</th>
<th>Zeramex XT Ø3.5 mm SB</th>
<th>Zeramex XT Ø4.2 mm RB</th>
<th>Zeramex XT Ø5.5 mm WB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>ZrO2, ATZ</td>
<td>ZrO2, ATZ</td>
<td>ZrO2, ATZ</td>
</tr>
</tbody>
</table>

Prosthetic platform

SB Ø3.85 mm
RB Ø4.2 mm
WB Ø5.5 mm

Healing caps
Material: PEEK

Soft Tissue Management
Gingiva former, provisional abutments
Material: PEEK, Vicarbo

Taking an impression
open/closed
Material: PEEK-CW30, Aluminium

Digital impression taking
Scanbody
Material: PEEK, PEEK-CW30

Standard Abutments/
Abutments Digital
Workflow including screw
Material: ZrO2, ATZ, Vicarbo

Docklocs® Abutments
(Locator® dental prosthesis)
Material: ZrO2, ATZ

Laboratory auxiliary parts
Material: Aluminium, PEEK green, PEEK-CW30

Screw
Material: Vicarbo

*Sample images. Differs from original! Material: ZrO2, ATZ/Vicarbo

**Locator® is a registered trademark of Zest Anchors, Inc., USA.

Locator® is a registered trademark of ZESTDENTAL GmbH & Co. KG.

Information: Further details for orders from page 51.
The Zeramex XT implant

The new generation of ceramic implants
The Zeramex XT implant: an innovation in the family of two-piece, reversible screw-in Zeramex ceramic implants. The root-shaped design of the Zeramex XT implant achieves high primary stability. The new internal connection ensures high prosthetic flexibility.

Hot isostatic post-compacted (HIP) zirconium dioxide ATZ
The Zeramex XT implant is manufactured from hard and hot isostatic post-compacted (HIP) zirconium dioxide ATZ blanks. No thermal process (sintering) or finishing takes place after the final shaping of the outer and inner geometry of the implant. This ensures a high degree of precision and further changes in the material structure are prevented. This manufacturing process is very complex and requires a great deal of experience and know-how.

“Bolt-in-Tube” – the simple and strong ceramic connection
The “Bolt-in-Tube” connection for Zeramex XT implants provides certainty when taking impressions and for temporary and permanent prosthetic restorations. The design elements of this connection have been selected to provide very high stability, while taking into account the typical material properties of ceramics.

The special geometry with the four interlocks and high precision enables fast and easy insertion and alignment of the abutment.

The core of the connection is the Vicarbo screw. It acts as a bolt, which anchors the abutment in the implant. The extremely hard ceramic is combined with a very stiff, carbon fibre-reinforced high-performance polymer. Similar to reinforced concrete, the ceramic absorbs the compressive forces, while the Vicarbo screw counteracts tensile forces.

Root-shaped with internal connection
Prosthetic flexibility
The Zeramex XT implant system offers a high degree of prosthetic flexibility thanks to straight, angled and fully customizable abutments.

“Bolt-in-Tube”
The “Bolt-in-Tube” connection prevents traction from being exerted on the ceramic. Forces are absorbed by the Vicarbo screw which functions as a bolt.

Internal connection
The four cross-shaped retaining elements provide the ideal torque on insertion so that the implant can be screwed in without stress peaks being exerted on the bone.

Zerafil surface
Excellent osseointegration with the hydrophilic, sandblasted and etched Zerafil surface. Surface treatment up to collar height of 0.6 mm.

Variable placement depth
The Zeramex XT implant is placed 1.6 mm supracrestal (optional 0.6mm) and offers high prosthetic flexibility.

High primary stability
The thread design and cylindrical-conical implant shape achieve high primary stability. The reservoir for bone grafts at the implant tip simplifies the placement of the implant.

Zirconium dioxide ATZ-HIP material
Innovative material for high stress and biocompatibility.
1. Preparation phase
As with any surgical procedure, implantation also requires proper professional preparation. Preparation includes a thorough dental and general health examination which includes taking X-ray images and a detailed discussion with the patient regarding their prior medical history. Conventional, prosthetic and periodontal preparatory treatment should be completed before initiating the implant therapy. The options and intentions for later prosthetic restoration (item 5) should be included in the discussion from the start. Use this baseline to work out the individual therapy plan and create a protocol. CT and DVT can be used to gather information about bone conditions which are difficult to diagnose. The bone and its quality decide ultimately on the position and number of implants.

2. Implant selection
Implant length and diameter are based on X-ray images. Always use the implant with the largest possible diameter. The vestibular wall thickness must be at least 1 mm, however, to preserve adequate blood circulation. If this is not possible, bone grafting will be necessary.

3. Bone preparation
It is essential to follow the drilling protocol starting on page 20. You must provide constant cooling during drilling because temperatures higher than 42 °C may alter bone structure and affect osseointegration!

Important!
Insert the drill only to the specified marking. The implant is not self-tapping; always use a thread cutter. If the cortical bone is very hard, use the Zeradrill extension. Follow the corresponding drilling protocols. Replace drills after about 20 implantations or in case of reduced cutting performance.

4. Implant insertion
We recommend tightening the implant by hand and not tightening at more than 15 rpm. The implant is placed 1.6 mm supracrestal, but can optionally be sunk deeper (0.6 mm supracrestal). The edge of the implant must be easily accessible in order to correctly tighten the abutment after the initial healing phase. Very good primary stability is important. Use a healing cap to cover the implant after the placement and close the gums. A gingiva former can be used directly in exceptional cases. The minimum required healing period is 3 months for the lower jaw and 6 months for the upper jaw.

Do not over-tighten
We recommend a screw-in torque of 20–30 Ncm. The maximum torque for ø3.5 mm SB implants is 35 Ncm. For ø4.2 mm RB and ø5.5 mm WB implants, the maximum torque is 45 Ncm. Never exceed this torque. The required torque is always less than the maximum torque, depending on the bone quality (soft bone → less torque) and implant length (short implants → less torque).

5. Prosthetic restoration
A range of standard abutments, CAD/CAM abutments, customized abutments and Zeramex Docklocs® abutments for removable prostheses is available for prosthetic restorations. Find out more on page 27 onwards. Prosthetic restoration.

Distances at bone level

Distance to adjacent tooth at bone level
A minimum distance of 1.5 mm between the implant shoulder and the adjacent tooth is required at bone level (mesial and distal).

Distance to adjacent implant at bone level
A minimum distance of 3 mm between two adjacent implant shoulders (SB/RB/WB) (mesiodistal) is required.
Surgical tools

Important!
Follow the corresponding drilling protocols. Replace drills after about 20 implantations or in case of reduced cutting performance.

Ratched Adaptor Unit Short (P48932)
Surgical Ratchet (P48933)

Zeradrill
S8 (8 mm) (T35608)
S10 (10 mm) (T35610)
S12 (12 mm) (T35612)
S14 (14 mm) (T35614)

R8 (8 mm) (T36608)
R10 (10 mm) (T36610)
R12 (12 mm) (T36612)
R14 (14 mm) (T36614)

W8 (8 mm) (T37608)
W10 (10 mm) (T37610)
W12 (12 mm) (T37612)

Zeradrill Pilot ø2.3 mm (T35602)

Depth gauge Depth gauge ø2.3 mm (T38650)

Profile Drill SB Small ø3.5 mm (XT35630)

Depth gauges Small/Regular/Wide (T38650)

Zeratap Small ø3.5 mm (T35620)

Zeradill Extension Small ø3.5 mm (T35622)
Regular ø4.2 mm (T36622)
Wide ø5.5 mm (T37622)

Depth gauges Small/Regular/Wide (T38650)

Pick-up (20 mm) (XT36620)
Pick-up (25 mm) (XT36625)
Rescue Pick-up (XT36622)

Prosthetic key Prosthetic key (19 mm) (XT38619)
Prosthetic key (23 mm) (XT38623)
Prosthetic key (28 mm) (XT38628)

<table>
<thead>
<tr>
<th>Extension Drill Extension (C7650)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Pick-up Rescue Pick-up (XT36622)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prosthetic key Prosthetic key (23 mm) (XT38623)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prosthetic key Prosthetic key (28 mm) (XT38628)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prosthetic key Prosthetic key (19 mm) (XT38619)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prosthetic key Prosthetic key (23 mm) (XT38623)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prosthetic key (28 mm) (XT38628)</th>
</tr>
</thead>
</table>

* These slots are reserved for system expansion.
Reprocessing of medical devices/general requirements

Refer to the legal and hygiene regulations which are valid for medical office practices and hospitals in your country. This applies in particular to specifications for the effective denaturation of prions. Treatment always involves a risk of contamination and infection. Take preventive measures to actively eliminate the risk or to reduce it as much as possible.

These measures include:

- Evaluation of the risks that accompany the medical intervention, decision on appropriate protective measures.
- Development of schematic/systematic procedures for the workflow, in order to prevent contamination and injuries.
- Careful recording of each patient’s medical history to be aware of the risk of infection.

All medical devices that have been used, but also opened and laid out for use, are to be considered contaminated and reprocessed hygienically. Organise the transport of these in such a way that no staff members, co-workers or third parties are endangered. All personnel must wear the appropriate protective clothing and gloves.

Medical products may corrode if they are stored in a physiological saline solution. Instruments are to be submerged fully in the sterilisation trays, without air bubbles.

The use of demineralised water to rinse instruments after cleaning, disinfection, and sterilisation; you must ensure the cleaning, disinfection, and sterilisation process parameters in every cycle. Please note the shelf life of the instruments.

You are responsible for the sterility of the products you use. For this reason, you must only use validated procedures for cleaning, disinfection, and sterilisation; you must ensure regular maintenance of your equipment, and observe all process parameters in every cycle. Please note the shelf life of products in sterile packaging (manufacturer’s data sheet). Reprocessing ends with the release for use. Sterilisation indicator and sterilisation date must be recorded on every sterile packaging.

Important! Products that are delivered in non-sterile condition (e.g. drills and abutments) must be sterilised before they are used on a patient the first time. After use, all reusable medical devices must be reprocessed in accordance with the described procedure.

Automated reprocessing

For automated cleaning to be effective, it must be preceded by manual cleaning. This removes large impurities (blood, tissue and bone fragments). Rinse instruments under cold, running water immediately after use, and use a fine nylon brush to clean off the large impurities. Then place the instruments in the cleaning tray of your disinfection and cleaning device.

Ultrasonic cleaning (optional)

If the instruments are very soiled and it is not possible to remove large impurities manually, cleaning in an ultrasonic bath is recommended. Important: The cleaning agent must be compatible with the products. Please observe the application times and concentrations specified by the manufacturer.

Automated cleaning

Only use properly suited cleaning and disinfection equipment for automated cleaning tasks. This should be validated by the user on the basis of established cleaning processes. Place parts in the cleaning tray in accordance with instructions provided by the manufacturer of the equipment. There are commercially available cleaning and disinfection agents. We recommend “neodisher MediClean” and “neodisher Z” as the neutralising agent (both from Dr. Weigert, Hamburg). Follow the manufacturer’s information regarding dosage and use. We recommend fully demineralised water to clean instruments and for the final rinsing procedure. The selected cleaning and disinfection program should run with the optimal temperature for removal of blood (45–55 °C).

Example of a cleaning program:

- Pre-rinse with cold water 4 min
- Clean with alkaline cleaning agent at 45–55 °C 10 min
- Neutralisation 6 min
- Intermediate rinse 3 min
- Disinfection 5 min
- Drying (max. 130 °C) 5 min

Before the sterilisation process, check the cleaned, dried and disinfected parts for corrosion and damage.

Manual reprocessing

Place the products in a disinfectant solution after use to prevent them from drying out and as a personal protection measure. Remove large impurities (blood, tissue and bone fragments). To do this, take the instruments from the tray and clean them under cold, running water with a fine nylon brush. Never use a metal brush or steel wool for this step!

Ultrasonic cleaning (optional)

If the instruments are very soiled and it is not possible to remove large impurities manually, cleaning in an ultrasonic bath is recommended. Important: The cleaning agent must be compatible with the products. Please observe the application times and concentrations specified by the manufacturer.

Cleaning

Before cleaning the products, rinse them under a flow of cold, demineralised water. Disassemble all products that can be taken apart. A suitable cleaning agent is, for example, “neodisher MediClean” (Dr. Weigert, Hamburg). Place the products in a fresh cleaning bath, in accordance with the manufacturer’s information. Clean the parts with a nylon brush. Rinse the products several times with demineralised water and check for corrosion or damage.

Disinfection

Place the products that need to be disinfected in a fresh disinfectant bath. The liquid must cover them completely. ID 212 instrument disinfection (Dürr System Hygiene) is a suitable disinfectant, for example.

Rinsing and drying

After disinfecting the products, rinse thoroughly with demineralised water. Use residue-free compressed air to dry the instruments.

Sterilisation

Re-assemble the dismantled medical devices before you start the sterilisation procedure. Sort the separately cleaned and disinfected products into the appropriate sterilisation tray. You may also sterilise products individually.

Then pack the filled trays and/or the individual products in a non-reusable bag suitable for use in a steam steriliser (single or double bags) and/or in a sterilisation container. Bags for use in steam sterilisation processes must meet the specifications of DIN EN ISO 11607 / ANSI/AAMI ST79 / AAMI TIR12:2010.

Examples: a non-reusable sterilisation bag (single or double bag) with temperature tolerance of at least 134 °C (274 °F) and vapour permeability that allows adequate protection from mechanical damage, or else a sterilisation container, which must undergo regular maintenance according to the specifications of the manufacturer.

Instruments such as drills, thread cutters and depth gauges have dedicated positions in the Zeramex XT Surgery Tray (XTA8850/XTA8856), where they can be placed for sterilisation. Sterilisation is achieved in the autoclave at 132 °C / 270 °F or 134 °C / 274 °F for the duration of at least 18 minutes holding time and subsequent vacuum drying. The parts should then be marked with a sterilisation date and placed in dry and dust-free storage.

EN ISO 17664

Sterilisation and instrument care
Technical Information

Zeramex Implants

Labelling and colour coding
The implants are colour-coded on the packaging.

Description
The Zeramex XT Implant is an innovation in the family of two-piece, reversible screw-in Zeramex ceramic implants. The root-shaped design of the Zeramex XT implant achieves high primary stability. The internal connection ensures high prosthetic flexibility.

Indication
Information on indications is available in the instructions for use (IFU) at www.zeramex.com.

Material
Zirconium dioxide ATZ, ZrO2-ATZ-HIP white

Order information
SB ø3.5 mm
- XT15508 Zeramex XT ø3.5 mm SB, 8 mm (9.8 mm)
- XT15510 Zeramex XT ø3.5 mm SB, 10 mm (11.6 mm)
- XT15512 Zeramex XT ø3.5 mm SB, 12 mm (13.6 mm)

RB ø4.2 mm
- XT16508 Zeramex XT ø4.2 mm RB, 8 mm (9.8 mm)
- XT16510 Zeramex XT ø4.2 mm RB, 10 mm (11.6 mm)
- XT16512 Zeramex XT ø4.2 mm RB, 12 mm (13.6 mm)
- XT16514 Zeramex XT ø4.2 mm RB, 14 mm (15.4 mm)

WB ø5.5 mm
- XT17508 Zeramex XT ø5.5 mm WB, 8 mm (9.8 mm)
- XT17510 Zeramex XT ø5.5 mm WB, 10 mm (11.6 mm)
- XT17512 Zeramex XT ø5.5 mm WB, 12 mm (13.6 mm)

Zerafil surface

Labelling
Zerafil is available for all Zeramex implants and not specifically labelled.

Description
The Zerafil surface is a micro-structured implant surface that enables optimum, quick and safe osseointegration of the implants.

Blasting with high-grade corundum lends the surface its macrostructure; subsequent acid etching lends it its microstructure, which is key to osseointegration.

Acid etching guarantees a pure implant surface and ensures the required hydrophilic properties.

Design
The endosseous section of the implant features the Zerafil surface. The neck section (0.6 mm) is polished smooth and not structured with Zerafil.

Osseointegration
The success rate of Zeramex XT implants with a Zerafil surface is 98%1), and bears witness to the decisive osseointegration thanks to the optimum surface structure.2) The hydrophilic implant surface Zerafil is sandblasted and etched so that osteoblasts grow directly up to the implant and firm adhesion to the implant surface is achieved.3)

Example of 8 mm implants SB/RB/WB

1) Status January 2020, internal data from market surveillance
Technical Information

Zeradrill drill

Labelling and colour coding
The size of the drill is marked on the packaging and the shaft, and appropriate colour coding is applied.

Description
The Zeradrill drill guarantees very good bone preparation for the implant with maximum protection of the surrounding tissue and cells.

The use of hardened medical-grade stainless steel as the base material allows the heat generated by drilling to be efficiently conducted away.

Zeradrill drills are furnished with a pure, metal-free and amorphous carbon coating. This only contains carbon and hydrogen and is therefore 100% metal-free and biocompatible.

Material
1. Medical-grade stainless steel
2. Protective layer
3. DLC carbon coating* (a-C:H)

*DLC (Diamond-like Carbon) High-performance coating made of diamond-like carbon

Example of 8 mm drill
Surgical phase

Planning the insertion depth with the drill stop

Drill stop
The drill stop allows the drilling depth to be precisely controlled. The drill stop is placed on the drill sleeve. It allows you to insert the implant 1.6 mm or 0.6 mm supracrestal.

Note: Correct position for insertion depth:

1.6 mm supracrestal

0.6 mm supracrestal

Depth marks

Diameter
The diameter is indicated on each tool by a colour code.

Example of implant
Regular ø4.2 × 8 mm 1.6 mm supracrestal

Surgical preparation
Surgical preparation includes steam sterilisation of the surgical tray (surgical instruments) at 132 °C / 270 °F or 134 °C / 274 °F / for: 18 minutes

Caution!
The drilling depth is up to 1 mm deeper than the corresponding implant.

Sterilisation before surgery
If the drills and instruments are used more than once, place them in the saline solution during the treatment.
Surgical phase

Drill protocol Ø3.5 mm SB (1.6 mm supracrestal)

Example of implant
Small Ø3.5 × 8 mm

14 mm
12 mm
10 mm
1.6 mm collar height
Endosseous depth 8 mm
1 mm

Note: Optionally, the implant can also be positioned 0.6 mm supracrestal (instead of 1.6 mm). Drill 1 mm deeper in this case. A profile drill (XT35630) is also required.

Endosseous Ø3.5 mm

Important!
With Ø3.5 mm implants, do not exceed a torque of 35 Ncm.

Caution!
Always precut the entire thread length.

Important!
With Ø3.5 mm implants, do not exceed a torque of 35 Ncm.

Caution!
Always precut the entire thread length.

Surgical phase

Drill protocol Ø3.5 mm SB (0.6 mm supracrestal)

Example of implant
Small Ø3.5 × 8 mm

14 mm
12 mm
10 mm
0.6 mm collar height
Endosseous depth 9 mm
1 mm

Note: If the implant is placed 0.6 mm supracrestal, the drill and thread cutter must be drilled 1 mm deeper. A profile drill (XT35630) is also required.
Surgical phase

Drill protocol Ø4.2 mm RB

Example of implant
Regular Ø4.2 × 8 mm

Note: Optionally, the implant can also be positioned 0.6 mm supracrestal (instead of 1.6 mm). The drill and thread cutter must be drilled 1 mm deeper in this case.

Important!
With Ø4.2 mm implants, do not exceed a torque of 45 Ncm.

Caution!
Always precut the entire thread length.

Endosseous Ø4.2 mm

Important!
With Ø4.2 mm implants, do not exceed a torque of 45 Ncm.

Caution!
Always precut the entire thread length.

Surgical phase

Drill protocol Ø5.5 mm WB

Example of implant
Wide Ø5.5 × 8 mm

Note: Optionally, the implant can also be positioned 0.6 mm supracrestal (instead of 1.6 mm). The drill and thread cutter must be drilled 1 mm deeper in this case.

Important!
With Ø5.5 mm implants, do not exceed a torque of 45 Ncm.

Caution!
Always precut the entire thread length.
Surgical phase

Planning drilling for 0.6 mm supracrestal

Optional insertion depth up to **0.6 mm** supracrestal

Important!
The effective drilling depth is up to 2 mm longer than the defined implant length.

Example of implant
Regular Ø4.2 × 8 mm

0.6 mm collar height

Endosseous depth 9 mm

Drill hole depth **10 mm**

1 mm

Table

<table>
<thead>
<tr>
<th>Article number</th>
<th>Selected implant length</th>
<th>Pilot Drill drill hole depth</th>
<th>Zeradrill</th>
<th>Extension</th>
<th>Zeratap</th>
<th>Screw-in depth</th>
<th>Effective hole depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>XT15508</td>
<td>8 mm</td>
<td>9 mm</td>
<td>lip to sleeve</td>
<td>9 mm</td>
<td>9 mm</td>
<td>Ø0.6 mm Supracrestal</td>
<td>10 mm</td>
</tr>
<tr>
<td>XT16508</td>
<td>8 mm</td>
<td>9 mm</td>
<td>lip to sleeve</td>
<td>9 mm</td>
<td>9 mm</td>
<td>Ø0.6 mm Supracrestal</td>
<td>10 mm</td>
</tr>
<tr>
<td>XT17508</td>
<td>8 mm</td>
<td>9 mm</td>
<td>lip to sleeve</td>
<td>9 mm</td>
<td>9 mm</td>
<td>Ø0.6 mm Supracrestal</td>
<td>10 mm</td>
</tr>
<tr>
<td>XT15510</td>
<td>10 mm</td>
<td>11 mm</td>
<td>lip to sleeve</td>
<td>11 mm</td>
<td>11 mm</td>
<td>Ø0.6 mm Supracrestal</td>
<td>12 mm</td>
</tr>
<tr>
<td>XT16510</td>
<td>10 mm</td>
<td>11 mm</td>
<td>lip to sleeve</td>
<td>11 mm</td>
<td>11 mm</td>
<td>Ø0.6 mm Supracrestal</td>
<td>12 mm</td>
</tr>
<tr>
<td>XT17510</td>
<td>10 mm</td>
<td>11 mm</td>
<td>lip to sleeve</td>
<td>11 mm</td>
<td>11 mm</td>
<td>Ø0.6 mm Supracrestal</td>
<td>12 mm</td>
</tr>
<tr>
<td>XT15512</td>
<td>12 mm</td>
<td>13 mm</td>
<td>lip to sleeve</td>
<td>13 mm</td>
<td>13 mm</td>
<td>Ø0.6 mm Supracrestal</td>
<td>14 mm</td>
</tr>
<tr>
<td>XT16512</td>
<td>12 mm</td>
<td>13 mm</td>
<td>lip to sleeve</td>
<td>13 mm</td>
<td>13 mm</td>
<td>Ø0.6 mm Supracrestal</td>
<td>14 mm</td>
</tr>
<tr>
<td>XT17512</td>
<td>12 mm</td>
<td>13 mm</td>
<td>lip to sleeve</td>
<td>13 mm</td>
<td>13 mm</td>
<td>Ø0.6 mm Supracrestal</td>
<td>14 mm</td>
</tr>
<tr>
<td>XT18514</td>
<td>14 mm</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

* For a length of 14 mm, we recommend that the implant is not placed 0.6 mm supracrestal.

Handling

1. **Contents**
 Box contents: Implant in a spherical packaging with matching healing cap.
 Important! Check the required implant dimensions before opening the package.

2. **Open sphere**
 Open the sphere by twisting.

3. **Remove**
 Remove the sterile secondary blisters (low microbial contamination) and patient labels from the sphere.

4. **Open blister**
 Break the seal shortly before use (interior is sterile).

5. **Pick up implant**
 Pick up the implant using the pick-up tool (insert in the ratchet adapter; snap in the square socket).

Required material

Pick-up (XT36620/XT36625), Ratchet Adapter Unit Short (P48932)

Surgical phase

1. **Insert**
 - **1. Screw In**
 - Slowly screw the implant into the precut drill hole.
 - **Important!**
 - Never use the rescue pick-up for insertion.

2. **2. Tighten**
 - Tighten the implant using the ratchet.
 - **Recommendation:** 20 - 30 Ncm
 - **SB max. 35 Ncm**
 - **RB/WB max. 45 Ncm**
 - **Important!**
 - Due to the conical design, torque is only exerted in the last two rotations.

3. **3. Positioning**
 - The arrows show the possible positions of the angled abutment. Take this into account when inserting the implant.
 - **Do not over-tighten**
 - The maximum torque for all SB implants is **35 Ncm**. The maximum torque for RB and WB implants is **45 Ncm**. Never exceed this torque.
 - The pick-up has a predetermined breaking point of approximately 50 Ncm. Maximum speed: **15 rpm**.

4. **Seal**
 - **4. Seal**
 - Seal the implant with the healing cap using the prosthetic key (XT38619/XT38623/XT38628) and carefully tighten the healing cap (max. **5 Ncm**).

5a. **Version 1**
 - Closed healing (recommended).

5b. **Version 2**
 - Open healing; note closely adjacent gingiva.

Zeramex XT

Prosthetic restoration

[Scan me!]

www.zeramex.com
Soft tissue management

1. **Positioning**
 - Gingiva former
 - Required material: Gingiva former (SB35503/SB35504/RB36503/RB36504/ WB37503/WB37504), Prosthetic key (XT38619/XT38623/XT38628)

2. **Temporary restoration**
 - 1. Position
 - Position the temporary abutment and tighten with the prosthetic key (max. 15 Ncm).
 - Important! The maximum wearing time of the temporary abutment is 180 days.
 - 2. Process
 - If necessary, work on the provisional extra-oral and provide it with a provisional crown.
 - Processing the provisional restoration
 - It is preferable to machine the polymer with fine-grain diamond-coated instruments at a high speed. This is done extra- orally with slight pressure and effective cooling.
 - Required material: Provisional restoration (SB35530/RB35530/WB37530), Prosthetic key (XT38619/XT38623/XT38628)

Digital impression taking

1. **Intraoral scan**
 - In the surgery
 - 1. Positioning
 - Thoroughly clean the implant connection. Place the corresponding scan abutment (Scanbody 58/RB/WB) on the implant and ensure that the surface is clearly visible to the scanner during positioning.
 - 2. Screw tight
 - Tighten the scan abutment (Scanbody 58/RB/WB) with the corresponding screw (max. 5 Ncm) and ensure it is firmly in place.
 - 3. Taking an impression
 - Perform the scanning procedure according to the instructions of the system used. Send digital scan data to the laboratory to create the 3D print model with associated analogue cavity.
 - Information! Alternatively, a master model can also be digitised in a 3D laboratory scanner for further processing.
 - Information! Method suitable for common CAD/CAM systems.

In the laboratory

1. **Connecting**
 - Important! Check the analogue cavity in the print model for structural defects and residues.
 - 2. Fitting
 - Insert and centre the Digital Implant Replica into the cavity. Then press the Digital Implant Replica down with sufficient pressure until it clicks into place. The basally visible surface should be flush with the print model. Check Digital Implant Replica for tight fit.
 - Important! Repeated removal and insertion of the replica in the same model may cause wear to the snap-in function.
 - 3. Restoration
 - The individual secondary part for occlusal screwed restorations (from page 36) is available for the digital workflow. Digital scan data can be processed directly in exocad and 3Shape software (complete integration).
 - Required material: Scanbody incl. Screw (SB35514/RB36514/WB37514), Digital Implant Replica Placer (RB36522), Digital Implant Replica (SB35522/RB36522/WB37522)
Conventional impression taking

Open tray

In the surgery
1. Position
Place the locking pin with the transfer sleeve on the implant shoulder under slight pressure while turning until it snaps into the hex head socket, rests securely on the implant shoulder, and can no longer be rotated.

4. Connecting
Position the transfer sleeve on the replica shoulder under slight pressure while twisting until it snaps into the hex head socket of the digital implant replica, rests securely on the shoulder and can no longer be rotated. Tighten the locking pin clockwise by hand.

In the laboratory
2. Screw tight
Secure the transfer sleeve with one hand. Tighten the locking pin clockwise by hand, and check the position for a form-fit. In case of doubt, take an X-ray.

5. Creating model
Check that the transfer with the screw-fitted digital implant replica is securely seated. Create master model. Remove the locking pin before removing the impression.

Important!
The transfer sleeves must be snapped into the inner edge and mate securely. To check, apply a slight counter-movement.

3. Taking an impression
Create the impression with an open tray. Unscrew and remove the locking pin. Remove the impression and send with the locking pin to the dental technician.

6. Restoration
Select an abutment based on the prosthetic requirements and the preferred surgical method. Straight and angled abutments, CAD/CAM and customized abutments are available, along with Zeramex Docklocs® Abutments (from page 49).

Required material
Transfer Open Tray (SB35510/ RB36510/RB37510) Digital Implant Replica (SB35522/ RB36522/WB37522)

Caution!
Closed impression taking is not recommended for the front section of the maxilla or in the case of angulation greater than 15°.

Closed tray

In the surgery
1. Positioning
Place the transfer sleeve on the implant shoulder under slight pressure while turning until it snaps into the hex head socket of the digital implant replica, rests securely on the shoulder and can no longer be rotated.

4. Connecting
Position the transfer sleeve on the replica shoulder under slight pressure while twisting until it snaps into the hex head socket, rests securely on the implant shoulder, and can no longer be rotated. Tighten the locking pin clockwise by hand.

In the laboratory
2. Tighten
Tighten the locking pin clockwise by hand, and check the position for a form-fit.

5. Repositioning and creating model.
Reposition the transfer with the screw-fitted digital implant replica and check that it is securely seated. Create master model.

3. Taking an impression
Take an impression with a closed tray and remove. Unscrew the locking pin, remove the transfer from the implant and send to the dental technician with the impression.

6. Restoration
Select an abutment based on the prosthetic requirements and the appropriate surgical method. Straight and angled abutments, CAD/CAM and customized abutments are available, along with Zeramex Docklocs® Abutments (from page 49).

Required material
Transfer Closed Tray (RB36312/ RB37313) Digital Implant Replica (SB35522/RB36522/WB37522)
Prosthetic process

Field of use
Information on fields of use and indications is available in the instructions for use (IFU) at www.zeramex.com.

1 Preparation phase
Prosthetic restoration is governed by the overall approach for achieving the best possible results. Integral functionality, aesthetics and patient comfort are the primary considerations. A detailed dental analysis (including X-rays) taking into account the patient’s medical history is the foundation for this. Create the treatment plan based on the main considerations.

2 Gingiva management
A “pink” appearance reflects healthy gums. It is essential to treat any gum disorders in advance. Soft tissue grows well around zirconium oxide, which is of great relevance, especially in the anterior region. A natural emergence profile is individually created using a gingiva former or a provisional, and the “black triangle” is a thing of the past.

3 Abutment/implant connection
There are two basic pathways to metal-free, aesthetically and biologically flawless restoration:
- Screwed prosthetic restoration (page 34)
- Cemented prosthetic restoration (page 38)
The range of metal-free prosthetics is extensive and satisfies the stringent requirements with regard to aesthetics and functionality. The Zeramex XT implant with its various abutments is ideal for nearly every situation.

4 Workflow
The Zeramex XT implant system seamlessly integrates with conventional procedure using manual, direct and indirect impressions.

Prosthetic tools

Important!
Products must be secured against aspiration when handled intraorally!

Ratchet
Important!
Always store the ratchet untightened.

Prosthetic key

Prosthetic kit

Note: The exceptions are the screws (RB16550/RB36553/RB36550/RB36554). Please note the information on pages 48-50.

Docklocs® is a registered trademark of MEDEALIS GmbH, DE.
Screwed connection

Abutments
- Straight (in two collar heights) and angled abutments are available for the implants 3.5 mm (SB), 4.2 mm (RB) and 5.5 mm (WB).

Vicarbo screw
The strong screw made of high performance polymer reinforced with carbon fibre.

Screwed prosthetic restoration

Digital Workflow
Zerabase/Zerabase X. The individually shaped abutment for occlusal screwed restorations. Integration in exocad and 3Shape software.

Customized abutment: Your Zeramex Digital Solutions competence centre for digital and individual prosthetic solutions - customized from A-Z.

Fabricating supraconstructions in the laboratory
The Zeramex XT system offers reversible screwing into zirconium dioxide. The internal thread makes it possible to screw prosthetic parts and zirconium dioxide abutments into implants. The anti-rotation protection on the platform allows secondary parts to be securely and precisely positioned, and the laboratory screw ensures that they are firmly seated.

Important!
Please note the information on machining abutments on page 47!

- Every abutment is supplied with the appropriate Vicarbo screw.
- Every Vicarbo screw may only be tightened once up to the maximum torque. The torque for the Vicarbo screw for the SB/RB/WB platform is always min. 20 Ncm / max. 25 Ncm!
- For work in the laboratory, we offer laboratory screws that may not be tightened more than 5 Ncm.
- Adapt your approach to the anatomical situation and do not use over-dimensioned crowns or connections to natural teeth (hybrid restoration).
- Do not use “floating crown attachments” with an abutment.
- When grinding the abutment, an additional replica can be used as a holder. Counterpressure with the fingers reduces vibration.

Important!
It is essential to consider the minimum layer thickness according to the manufacturer’s instructions for the specific crown material.

Tip: Use an individual positioning wrench for angled abutments or complex restorations.

A. Select the suitable abutment.

B. If necessary, individually machine the abutment. Only process the abutment under sufficient, continuous cooling with slight pressure. Local overheating causes micro-fissures and destruction of the abutment.

C1. Monolithic crowns made of various optimised polymers or zirconium dioxide.

C2. All-ceramic crowns made of layered or pressed ceramic on a zirconium dioxide cap.

34
Occlusal screwed connection in the patient’s mouth

Restoration with placeholders

When using placeholders, make sure that the screw channel diameter allows the Vicarbo screw to be inserted into and removed from the abutment and crown at any time, even when the crown is already tightly cemented to the abutment.

You can make your own positioning aids/placeholders:

- **SB/RB/WB** platform: > 2.8 mm

Screw channel with a reduced diameter

You can also use screw channels with a reduced diameter instead of placeholders. With this, the screw channel diameter can be reduced to > 2.2 mm. The prosthetic key (XT38619/XT38623/XT38628) can be used as a placeholder.

Important!
- When using reduced-diameter screws, the Vicarbo screw must be inserted in the abutment in the laboratory before the crown is secured onto the abutment.
- The Vicarbo screw cannot be screwed in or out after the crown has been cemented.
- When cementing the crown, excess cement must not enter the screw channel of an inserted screw (insert cotton wad or a similar placeholder that can be removed from the screw channel).
- If the abutment is shortened, make sure that the Vicarbo screw has sufficient vertical space to be screwed in and out.

Caution!
When sealing the screw channel, do not use any gels or liquids containing chlorine.

Required material

- Abutment incl. Vicarbo screw (SB15501/SB15502/SB15515), (RB16501/RB16502/RB16515), (WB17501/WB17502/WB17515), Zerabase X/Zerabase incl.
- Vicarbo screw (SB15535/SB15536), (RB16535/RB16536/RB16530/RB16531), (WB17535/WB17536/WB17530/WB17531), Customized abutments (SB1551),(RB16551),(WB17551), Prosthetic key (XT38619/XT38623/XT38628)

Do not overtighten

The unique torque for the Vicarbo screw for all platforms is (SB/RB/WB): min. 20 Ncm / max. 25 Ncm.

Occlusal screwed connection in the patient's mouth

1a. The cap can be veneered by pressing or layering. Select the diameter of the screw channel for later screwing depending on the procedure:

- **SB/RB/WB** abutments: > 2.8 mm
- Reduced diameter: > 2.2 mm*

*Important!
When using reduced-diameter screws, the screw must be inserted in the abutment before the crown is cemented onto the abutment. Please note the information on page 36.

1b. Place the abutment with the cemented crown on the implant. Apply slight pressure to fit the abutment/crown until it snaps into place in the correct position. Hold the abutment/crown and tighten the screw in the screw channel by applying pressure from the occlusal direction.

Use the prosthetic key and the torque ratchet (SB/RB/WB): min. 20 Ncm / max. 25 Ncm).
Use a probe and/or X-ray to check if the abutment is correctly seated.
Cemented prosthetic restoration

Do not overtighten
The unique torque for the Vicarbo screw for all platforms is (SB/RB/WB): min. 20 Ncm / max. 25 Ncm.

Cementing the crown in the patient’s mouth
Note: If a screw channel is not possible or required, the crown can be produced in the laboratory without a screw channel.

2a.
The Vicarbo screw is picked up with the prosthetic key and inserted into the abutment. The abutment can now be transferred onto the implant with the prosthetic key.
Note: Hold the abutment and screw tight > No locking! Before tightening the screw, press it downward. Use the prosthetic key and the torque ratchet to tighten the screw. (SB/RB/WB: min. 20 Ncm / max. 25 Ncm). Use a probe and/or X-ray to check if the abutment is correctly seated.
Note: An individual positioning wrench may need to be made.

2b.
The cap can be veneered by pressing or layering. Cement the finished crown onto the tightly screwed abutment, and remove any excess cement.
Note: There is a specific Vicarbo Zeramex Screw for each abutment. Please note the technical data for Zeramex screws on pages 48-50.

Required material
Abutment incl. Vicarbo screw (SB15501/SB15502/SB15515), (RB16501/RB16502/RB16515), (WB17501/WB17502/WB17515). Zerabase X/Zerabase incl. Vicarbo screw (SB15535/SB15536), (RB16535/RB16536/RB16530/RB16531), (WB17535/WB17536/WB17530/WB17531). Customized abutments (SB1551), (RB16551), (WB17551). Prosthetic key (XT38619/XT38623/XT38628)

Platform switching

To prevent potential crestal bone loss or to increase the soft tissue volume around the implant platform, the excellent prosthetic flexibility of the Zeramex XT system allows platform switching with two options available.

1.
It is possible to place a Zeramex XT SB abutment (SB15501/SB15502/SB15515/SB15535/SB15536/SB15551) on any Zeramex XT RB implant (XT16508/XT16510/XT16512/XT16514).

2.
It is possible to place a Zeramex XT RB abutment (RB16501/RB16502/RB16515/RB16535/RB16536/RB16530/RB16531/RB16551) on any Zeramex XT WB implant (XT17508/XT17510/XT17512).

Caution!
There is no option for platform switching for Zeramex XT WB implants with Zeramex XT SB abutments.
Screwed prosthetic restoration CADCAM

Zerabase and Zerabase X for customized abutments
Screwed, all-ceramic restorations
Zeramex allows you to combine 100% metal-free dentures with highly efficient workflows. Zeramex Zerabase and Zerabase X provide you with the basis for your individually shaped abutment for occlusal screwed restorations. Work with your preferred work process and use Exocad or 3Shape software for digital workflows.

High flexibility
• Design the abutment the way you want it
• Individual shaping facilitates optimum aesthetics
• Residual cement can be removed easily and safely since preparation margins can be shaped ideally
• Design the abutment in a way that achieves ideal crown support and a stable fit
• Suitable for screw-retained and cement-retained restorations

Work processes
The Zeramex Zerabase Abutment and the smaller adhesive base Zerabase X allow you to work using your preferred work process.

Conventional work process
• Creating wax-up for moulded or milled restorations

Digital work process (digital design in exocad or 3Shape software)
• Machined abutment → scanning without Scanbody and designing in the software
• Non-machined abutment → scanning in Scanbody and designing in the software

Production
The cap or crown will be milled in your laboratory, in the milling centre of your choice, or chair-side

Leading software
The Zeramex Zerabase X Abutments are integrated in the market-leading systems: exocad and 3Shape.

exocad: The library will be updated automatically to include the Zeramex Zerabase and Zerabase X Abutments. Exception: Systems from Zirkonzahn and Amann Girrbach require that files be imported manually

3Shape: Please download the files from our website and import them into your system.

Information!
You can find all files on our website: www.zeramex.com
In addition to the production of customized abutments and monolithic crowns with Zeramex XT implant connections, the Zeramex Digital Solutions: competence centre offers you a service for processing your digital data or for the finishing of semi-finished blank restorations.

1. The impression is taken with an intraoral scanner or a classic impression in the patient with a master model that is then scanned.

2. Model the crown or the customized abutment in your 3Shape or Exocad software to create the required design.

3. Send us the digital data conveniently as an STL file and keep an overview of the current status of your data.

4. Zeramex Digital Solutions will produce the complete restoration including the Zeramex implant connection. This can be in the form of a customized abutment or as a one-piece monolith crown without joints and adhesive gap.

5. It is also possible to order a custom crown for Zerabase or other abutments directly from us.

6. As required, these can be supplied with and without screw hole.

7. All of our custom zirconium crowns are also available ready coloured and glazed.

8. Within just one week you will receive the precisely fitting prosthetic restoration you require – ready for immediate use. A 3D printed model can also be produced on request.

Zeramex Digital Solutions

Offer

Sample images: Differs from original!

Available colours (colour scale VITA)

<table>
<thead>
<tr>
<th>Colour Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>A2</td>
</tr>
</tbody>
</table>

Caution! Available for all products except RB16570.

*excl. Zerabase / Zerabase X Abutment

Monolithic crown
With implant connection (incl. Vicarbo screw)
(SB15560/RB16560/WB17560)

Stain & Glaze
SB/RB/WB
(RB16571)

3D model OK/UK
(without Replica)
(RB16570)
Do not overtighten

The unique torque for the Vicarbo screw of the Docklocs® Abutments for all platforms is (SB/RB/WB): max. 15 Ncm.

Sequence

Zeramex Docklocs® is a pre-finished connection system to secure removable restorations based on a snap connection.

Note: Zeramex Docklocs® Abutments are available in three heights (2 mm/3 mm/4 mm) and fit on all platforms (SB/RB/WB).

1. Divergences

The Zeramex Docklocs® system offers the option of integrating a dental prosthesis for implantation that diverges by up to 20°. This means that deviations between two implants of up to 40° can be corrected.

2. Insert the Zeramex Docklocs® Abutment

Ensure that the implant shoulder is not covered by hard or soft tissue. Screw the Zeramex Docklocs® Abutment with the Zeramex Docklocs® Insertion Instrument (XT38227) into the implant and tighten by hand. Tighten the abutment with the ratchet, the ratchet adapter and the Zeramex Docklocs® Insertion Instrument to 15 Ncm.

Note: Horizontal alignment of all Zeramex Docklocs® Abutments makes the insertion of the prosthesis easier for the patient.

Technical data

The Zeramex Docklocs® system consists of a Zeramex Docklocs® Abutment, the matching insertion instrument, a Zeramex Docklocs® housing, a Zeramex Docklocs® blockout ring, a Zeramex Docklocs® lab analogue, a Zeramex Docklocs® impression post and three exchangeable Zeramex Docklocs® polyamide retention inserts (PA12) with different colour-coded retention values and pull-off forces.

Zeramex Docklocs® Abutments (2 mm/3 mm/4 mm)

Note: The Zeramex Docklocs® retention inserts can be exchanged without tension using a conventional assembly and disassembly instrument for retention inserts.

Docklocs® is a registered trademark of MEDEALIS GmbH, DE.
Technical data for Zeramex XT abutments

Material
ZrO₂ ATZ-HIP
Composition:
- ZrO₂: 76%
- Al₂O₃: 20%
- Y₂O₃: 4%

Flexural strength: 2,000 MPa
CTE for ZrO₂ ATZ: 9 × 10⁻⁶/K

Grinding Standard Abutments

Do not overtighten
The unique torque for the Vicarbo screw for all platforms is (SB/RB/WB): min. 20 Ncm / max. 25 Ncm.

Procedure
- Conical part (4.0 mm) may be shortened.
- Only process under sufficient, continuous water cooling with slight pressure.
- Use high speed (water-cooled turbine) and fine grain size (red-ring diamond, smaller than 50 µm).

Example of abutment
Zeramex XT Abutment RB Straight, 1 mm RB16501

1. Marking (record) of the “Preparation process”
2. Adequate procedure with handpiece: Lightly encircle the preparation position, then expand it in a vertical, V-shaped movement until it is cut through.

* Caution!
Do not cut through zirconium dioxide that is the same thickness of the instruments or grinding tool.
Risk of overheating!

| Material | ZrO₂ ATZ-HIP
Composition: | ZrO₂: 76% | Al₂O₃: 20% | Y₂O₃: 4% |

Flexural strength: 2,000 MPa
CTE for ZrO₂ ATZ: 9 × 10⁻⁶/K

Technical data for Zeramex XT abutments

All dimensions in millimetres

SB15501 Zeramex XT Abutment SB Straight, 1 mm	7.0	4.6	1.0	0.7	0.6
SB15502 Zeramex XT Abutment SB Straight, 2 mm	8.0	4.6	2.0	0.7	0.6
SB15515 Zeramex XT Abutment SB Angular 15°, 1 mm	7.0	4.6	1.0	0.7	0.6
SB15535 Zeramex XT Zerabase X SB, Engaging for crown	4.8	4.6	0.8	0.4	–
SB15536 Zeramex XT Zerabase X SB Non-engaging, for bridge	4.8	4.6	0.8	0.4	–

RB16501 Zeramex XT Abutment RB Straight, 1 mm	7.0	5.0	1.0	0.7	0.6
RB16502 Zeramex XT Abutment RB Straight, 2 mm	8.0	5.0	2.0	0.7	0.6
RB16515 Zeramex XT Abutment RB Angular 15°, 1 mm	7.0	5.0	1.0	0.7	0.6
RB16535 Zeramex XT Zerabase X RB, Engaging for crown	4.8	4.6	0.8	0.4	–
RB16536 Zeramex XT Zerabase X RB Non-engaging, for bridge	4.8	4.6	0.8	0.4	–

WB17501 Zeramex XT Abutment WB Straight, 1 mm	7.0	6.0	1.0	0.7	0.6
WB17502 Zeramex XT Abutment WB Straight, 2 mm	8.0	6.0	2.0	0.7	0.6
WB17515 Zeramex XT Abutment WB Angular 15°, 1 mm	7.0	6.0	1.0	0.7	0.6
WB17535 Zeramex XT Zerabase X WB, Engaging for crown	4.8	5.6	0.8	0.4	–
WB17536 Zeramex XT Zerabase X WB Non-engaging, for bridge	4.8	5.6	0.8	0.4	–
WB17530 Zeramex XT Zerabase WB, Engaging for Crown	7.0	6.0	1.0	0.7	0.6
WB17531 Zeramex XT Zerabase WB Non-engaging, for Bridge	7.0	6.0	1.0	0.7	0.6
Technical data for Zeramex XT screws

Important distinguishing feature of Zeramex XT screws:
• The laboratory and Vicarbo screws have no grooves on the screw head and are 1.2 mm shorter than provisional and Scanbody screws
• The screw head diameter for all screws is 2.8 mm
• All screws are suitable for Small (SB), Regular (RB) and Wide Base (WB).

Vicarbo Screw
RB16550
Matches: SB/RB/WB Abutment
Distinguishing feature:
Length: 7.4 mm
No grooves on screw head
Black
Tightening torque:
min. 20 Ncm
max. 25 Ncm
Material: Vicarbo
Caution:
This screw is intended for the final treatment and may only be used once! It can be tried on with a max. 15 Ncm torque.

Lab Screw
RB36553
Matches: SB/RB/WB provisional
Distinguishing feature:
Length: 8.6 mm
Ring on screw head
Black
Tightening torque:
15 Ncm
Material: PEEK
Caution:
This screw may only be used for the temporary restoration!

Provisional Screw
RB36550
Matches: SB/RB/WB provisional
Distinguishing feature:
Length: 8.6 mm
Ring on screw head
Black
Tightening torque:
15 Ncm
Material: Vicarbo
Caution:
This screw may only be used for the temporary restoration!

Scanbody Screw
RB36514
Matches: SB/RB/WB Scanbody
Distinguishing feature:
Length: 8.6 mm
Ring on screw head
Black
Tightening torque:
5 Ncm
Material: PEEK-CW30
Caution:
This screw may only be used for the scanbodys!

Technical data for Zeramex XT screws

Vicarbo Screw
RB16550
Tightening torque:
min. 20 Ncm
max. 25 Ncm
Material: Vicarbo
Caution:
This screw is intended for the final treatment and may only be used once! It can be tried on with a max. 15 Ncm torque.

Lab Screw
RB36553
Tightening torque:
5 Ncm
Material: PEEK
Caution:
This screw may only be used for the temporary restoration!

Provisional Screw
RB36550
Tightening torque:
5 Ncm
Material: Vicarbo
Caution:
This screw may only be used for the temporary restoration!

Scanbody Screw
RB36514
Tightening torque:
5 Ncm
Material: PEEK-CW30
Caution:
This screw may only be used for the scanbodys!

SB Custom. Abutment
(SB15551*)
RB Custom. Abutment
(RB16551*)
WB Custom. Abutment
(WB17551*)

SB Scanbody (SB35514)
RB Scanbody (RB36514)
WB Scanbody (WB37514)

SB Zerabase X
Crown (SB15535)
SB Zerabase X
Bridge (SB15536)
SB Zerabase X
Crown (SB17536)
SB Zerabase X
Bridge (SB17535)
SB Zerabase X
Crown (SB15530)
SB Zerabase X
Bridge (SB15530)
SB Zerabase X
Crown (SB17530)
SB Zerabase X
Bridge (SB17531)
SB Custom. Abutment
(SB15551*)
RB Custom. Abutment
(RB16551*)
WB Custom. Abutment
(WB17551*)

SB Provisional
(SB35530)
RB Provisional
(RB36530)
WB Provisional
(WB37530)

SB straight, 1 mm
(SB15501)
RB straight, 1 mm
(RB16501)
WB straight, 1 mm
(WB17501)
SB straight, 2 mm
(SB15502)
RB straight, 2 mm
(RB16502)
WB straight, 2 mm
(WB17502)
SB Angular, 1 mm
15° (SB15515)
RB Angular, 1 mm
15° (RB16515)
WB Angular, 1 mm
15° (WB17515)
SB Custom. Abutment
(SB15551*)
RB Custom. Abutment
(RB16551*)
WB Custom. Abutment
(WB17551*)

SB Scanbody (SB35514)
RB Scanbody (RB36514)
WB Scanbody (WB37514)
The metal-free innovation: Vicarbo screw

Our objective was to offer a 100% metal-free solution in which not only the implant but also the screw are metal-free. We therefore decided to use the high-performance material Vicarbo. Vicarbo is a carbon-fibre reinforced PEEK plastic, in which the carbon fibres are aligned with the longitudinal axis of the material. In this way, we can achieve enormous strength. Thanks to the production process developed by Zeramex, the carbon fibres are not damaged during production and they retain their full function. This screw is unique in dental implantology.

This material has already proved its worth in other medical applications (e.g. orthopaedics) and is considered to be the material of the future. Aerospace engineers also use carbon fibre reinforced components because of their enormous strength and low weight.

Technical specifications
- Modulus of elasticity: >160 GPa.
- Flexural strength: >1,100 MPa.
- Tensile strength: 2,000 MPa.
- Sterilisation: Steam sterilisation at 132 °C / 270 °F or 134 °C / 274 °F / Time: 18 minutes.

Do I have to keep the specified tightening torques?
The specified tightening torque must be used to compensate the reduced tension through the tight fit and to ensure a reliable, permanent bond.

Why does the Vicarbo screw have a conical shoulder?
The conical shoulder of the screw was designed so that the fit with the abutment is as tight as possible without generating lateral forces that could damage the abutment later.

What material is the Vicarbo screw made from? Why is it black?
The screw is made of PEEK plastic reinforced with longitudinally aligned carbon fibres. The carbon fibres are responsible for the Vicarbo screw’s colour.
Zeramex XT Implants

<table>
<thead>
<tr>
<th>SB Ø3.5 mm Art. No.</th>
<th>Name</th>
<th>Dimension</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>XT15508</td>
<td>Zeramex XT Implant Ø3.5×8 mm SB (incl. Healing Cap)</td>
<td>Length: 8 mm</td>
<td>ZrO₂-ATZ-HIP</td>
</tr>
<tr>
<td>XT15510</td>
<td>Zeramex XT Implant Ø3.5×10 mm SB (incl. Healing Cap)</td>
<td>Length: 10 mm</td>
<td></td>
</tr>
<tr>
<td>XT15512</td>
<td>Zeramex XT Implant Ø3.5×12 mm SB (incl. Healing Cap)</td>
<td>Length: 12 mm</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RB Ø4.2 mm Art. No.</th>
<th>Name</th>
<th>Dimension</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>XT16508</td>
<td>Zeramex XT Implant Ø4.2×8 mm RB (incl. Healing Cap)</td>
<td>Length: 8 mm</td>
<td>ZrO₂-ATZ-HIP</td>
</tr>
<tr>
<td>XT16510</td>
<td>Zeramex XT Implant Ø4.2×10 mm RB (incl. Healing Cap)</td>
<td>Length: 10 mm</td>
<td></td>
</tr>
<tr>
<td>XT16512</td>
<td>Zeramex XT Implant Ø4.2×12 mm RB (incl. Healing Cap)</td>
<td>Length: 12 mm</td>
<td></td>
</tr>
<tr>
<td>XT16514</td>
<td>Zeramex XT Implant Ø4.2×14 mm RB (incl. Healing Cap)</td>
<td>Length: 14 mm</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WB Ø5.5 mm Art. No.</th>
<th>Name</th>
<th>Dimension</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>XT17508</td>
<td>Zeramex XT Implant Ø5.5×8 mm WB (incl. Healing Cap)</td>
<td>Length: 8 mm</td>
<td></td>
</tr>
<tr>
<td>XT17510</td>
<td>Zeramex XT Implant Ø5.5×10 mm WB (incl. Healing Cap)</td>
<td>Length: 10 mm</td>
<td>ZrO₂-ATZ-HIP</td>
</tr>
<tr>
<td>XT17512</td>
<td>Zeramex XT Implant Ø5.5×12 mm WB (incl. Healing Cap)</td>
<td>Length: 12 mm</td>
<td></td>
</tr>
</tbody>
</table>

Zeramex XT Abutments

<table>
<thead>
<tr>
<th>SB Platform Art. No.</th>
<th>Name</th>
<th>Dimension</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB15501</td>
<td>Zeramex XT Abutment SB Straight, 1 mm (incl. screw)</td>
<td>AH: 7 mm
CH: 1 mm
Ø: 4.6 mm</td>
<td>ZrO₂-ATZ-HIP</td>
</tr>
<tr>
<td>SB15502</td>
<td>Zeramex XT Abutment SB Straight, 2 mm (incl. screw)</td>
<td>AH: 8 mm
CH: 2 mm
Ø: 4.6 mm</td>
<td></td>
</tr>
<tr>
<td>SB15505</td>
<td>Zeramex XT Abutment SB Angular 15°, 1 mm (incl. screw)</td>
<td>AH: 7 mm
CH: 1 mm
Ø: 4.6 mm</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SB CADCAM Art. No.</th>
<th>Name</th>
<th>Dimension</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB15535</td>
<td>Zeramex XT Zerabase X SB, Engaging for crowns (incl. screw)</td>
<td>AH: 4.8 mm
CH: 0.8 mm
Ø: 4.6 mm</td>
<td>ZrO₂-ATZ-HIP
Vicarbo</td>
</tr>
<tr>
<td>SB15536</td>
<td>Zeramex XT Zerabase X SB Non-engaging for bars & bridges (incl. screw)</td>
<td>AH: 4.8 mm
CH: 0.8 mm
Ø: 4.6 mm</td>
<td></td>
</tr>
</tbody>
</table>

Zerabase Abutments are integrated into the systems of 3Shape and exocad.

<table>
<thead>
<tr>
<th>SB/RB/WB Vicarbo Screw Art. No.</th>
<th>Name</th>
<th>Dimension</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB16550</td>
<td>Zeramex XT (SB/RB/WB) Vicarbo screw, Straight/Angular/CADCAM/Zerabase X/Customized abutments</td>
<td>Length: 7.4 mm</td>
<td>Vicarbo</td>
</tr>
</tbody>
</table>
Zeramex XT Abutments

<table>
<thead>
<tr>
<th>Platform</th>
<th>Art. No.</th>
<th>Name</th>
<th>Dimension</th>
<th>Material</th>
</tr>
</thead>
</table>
| RB | RB16501 | Zeramex XT Abutment RB Straight, 1 mm (incl. screw) | AH: 7 mm
CH: 1 mm
Ø: 5 mm | ZrO₂-ATZ-HIP
Vicarbo |
| | RB16502 | Zeramex XT Abutment RB Straight, 2 mm (incl. screw) | AH: 8 mm
CH: 2 mm
Ø: 5 mm | ZrO₂-ATZ-HIP
Vicarbo |
| | RB16515 | Zeramex XT Abutment RB Angular 15°, 1 mm (incl. screw) | AH: 7 mm
CH: 1 mm
Ø: 5 mm | ZrO₂-ATZ-HIP
Vicarbo |
| RB CADCAM| RB16535 | Zeramex XT Zerabase X RB, Engaging for crowns (incl. screw) | AH: 4.8 mm
CH: 0.8 mm
Ø: 6.6 mm | ZrO₂-ATZ-HIP
Vicarbo |
| | RB16536 | Zeramex XT Zerabase X RB Non-engaging for bars & bridges (incl. screw) | AH: 4.8 mm
CH: 0.8 mm
Ø: 6.6 mm | ZrO₂-ATZ-HIP
Vicarbo |
| | RB16530 | Zeramex XT Zerabase RB, Engaging for crowns (incl. screw) | AH: 7 mm
CH: 1 mm
Ø: 5 mm | ZrO₂-ATZ-HIP
Vicarbo |
| | RB16531 | Zeramex XT Zerabase RB Non-engaging for bars & bridges (incl. screw) | AH: 7 mm
CH: 1 mm
Ø: 5 mm | ZrO₂-ATZ-HIP
Vicarbo |

Zerabase X Abutments

Zerabase X Abutments are integrated into the systems of 3Shape and exocad.

<table>
<thead>
<tr>
<th>Platform</th>
<th>Art. No.</th>
<th>Name</th>
<th>Dimension</th>
<th>Material</th>
</tr>
</thead>
</table>
| WB | WB17501 | Zeramex XT Abutment WB Straight, 1 mm (incl. screw) | AH: 7 mm
CH: 1 mm
Ø: 6 mm | ZrO₂-ATZ-HIP
Vicarbo |
| | WB17502 | Zeramex XT Abutment WB Straight, 2 mm (incl. screw) | AH: 8 mm
CH: 2 mm
Ø: 6 mm | ZrO₂-ATZ-HIP
Vicarbo |
| | WB17515 | Zeramex XT Abutment WB Angular 15°, 1 mm (incl. screw) | AH: 7 mm
CH: 1 mm
Ø: 6 mm | ZrO₂-ATZ-HIP
Vicarbo |
| WB CADCAM| WB17535 | Zeramex XT Zerabase X WB Engaging for crowns (incl. screw) | AH: 4.8 mm
CH: 0.8 mm
Ø: 5.6 mm | ZrO₂-ATZ-HIP
Vicarbo |
| | WB17536 | Zeramex XT Zerabase X WB Non-engaging for bars & bridges (incl. screw) | AH: 4.8 mm
CH: 0.8 mm
Ø: 5.6 mm | ZrO₂-ATZ-HIP
Vicarbo |
| | WB17530 | Zeramex XT Zerabase WB Engaging for crowns (incl. screw) | AH: 7 mm
CH: 1 mm
Ø: 6 mm | ZrO₂-ATZ-HIP
Vicarbo |
| | WB17531 | Zeramex XT Zerabase WB Non-engaging for bars & bridges (incl. screw) | AH: 7 mm
CH: 1 mm
Ø: 6 mm | ZrO₂-ATZ-HIP
Vicarbo |

Zerabase Abutments

Zerabase Abutments are integrated into the systems of 3Shape and exocad.

<table>
<thead>
<tr>
<th>SB/RB/WB</th>
<th>Art. No.</th>
<th>Name</th>
<th>Dimension</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vicarbo</td>
<td>RB16550</td>
<td>Zeramex XT (SB/RB/WB) Vicarbo screw, Straight/ Angular/CAD/CAM/Zerabase X/Customized</td>
<td>Length: 7.4 mm</td>
<td>Vicarbo</td>
</tr>
</tbody>
</table>

AH: Abutment height
CH: Collar height
Ø: Diameter
Zeramex Prolastics

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Name</th>
<th>Dimension</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB35500</td>
<td>Zeramex XT Healing Cap SB</td>
<td>Height: 0.6 mm</td>
<td>PEEK</td>
</tr>
<tr>
<td>SB35503</td>
<td>Zeramex XT Gingivaformer SB, 3 mm</td>
<td>Height: 3 mm Ø: 6 mm</td>
<td>PEEK</td>
</tr>
<tr>
<td>SB35504</td>
<td>Zeramex XT Gingivaformer SB, 4 mm</td>
<td>Height: 4 mm Ø: 4 mm</td>
<td>PEEK</td>
</tr>
<tr>
<td>SB35530</td>
<td>Zeramex XT Provisional SB (incl. screw)</td>
<td>AH: 7 mm CH: 1 mm Ø: 4 mm</td>
<td>Vicarbo</td>
</tr>
</tbody>
</table>

SB Impression Taking

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Name</th>
<th>Dimension</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB35510</td>
<td>Zeramex XT Transfer Open Tray SB</td>
<td>High sleeve: 11 mm / height incl. screw: 20 mm</td>
<td>Aluminium PEEK-CW30</td>
</tr>
<tr>
<td>SB35512</td>
<td>Zeramex XT Transfer Closed Tray SB</td>
<td>High sleeve: 7 mm / height incl. screw: 14 mm</td>
<td>PEEK-CW30</td>
</tr>
<tr>
<td>SB35513</td>
<td>Zeramex XT Transfer Closed Tray, long SB</td>
<td>High sleeve: 11 mm / height incl. screw: 18 mm</td>
<td>PEEK-CW30</td>
</tr>
<tr>
<td>SB35514</td>
<td>Zeramex XT Scanbody SB (incl. screw)</td>
<td>Height: 10 mm PEEK PEEK-CW30</td>
<td></td>
</tr>
<tr>
<td>SB35522</td>
<td>Zeramex XT Digital Implant Replica SB</td>
<td>Length: 10 mm Aluminium</td>
<td>Vicarbo</td>
</tr>
</tbody>
</table>

WB soft tissue management

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Name</th>
<th>Dimension</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>WB37500</td>
<td>Zeramex XT Healing Cap WB</td>
<td>Height: 0.6 mm</td>
<td>PEEK</td>
</tr>
<tr>
<td>WB37503</td>
<td>Zeramex XT Gingivaformer WB, 3 mm</td>
<td>Height: 3 mm Ø: 6 mm</td>
<td>PEEK</td>
</tr>
<tr>
<td>WB37504</td>
<td>Zeramex XT Gingivaformer WB, 4 mm</td>
<td>Height: 4 mm Ø: 6 mm</td>
<td>PEEK</td>
</tr>
<tr>
<td>WB37530</td>
<td>Zeramex XT Provisional WB (incl. screw)</td>
<td>AH: 7 mm CH: 1 mm Ø: 6 mm</td>
<td>Vicarbo</td>
</tr>
</tbody>
</table>

WB Impression Taking

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Name</th>
<th>Dimension</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>WB37510</td>
<td>Zeramex XT Transfer Open Tray WB</td>
<td>High sleeve: 11 mm / height incl. screw: 20 mm</td>
<td>Aluminium PEEK-CW30</td>
</tr>
<tr>
<td>WB37512</td>
<td>Zeramex XT Transfer Closed Tray WB</td>
<td>High sleeve: 7 mm / height incl. screw: 14 mm</td>
<td>PEEK-CW30</td>
</tr>
<tr>
<td>WB37513</td>
<td>Zeramex XT Transfer Closed Tray, long WB</td>
<td>High sleeve: 11 mm / height incl. screw: 18 mm</td>
<td>PEEK-CW30</td>
</tr>
</tbody>
</table>

RB soft tissue management

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Name</th>
<th>Dimension</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB36500</td>
<td>Zeramex XT Healing Cap RB</td>
<td>Height: 0.6 mm</td>
<td>PEEK</td>
</tr>
<tr>
<td>RB36503</td>
<td>Zeramex XT Gingivaformer RB, 3 mm</td>
<td>Height: 3 mm Ø: 5 mm</td>
<td>PEEK</td>
</tr>
<tr>
<td>RB36504</td>
<td>Zeramex XT Gingivaformer RB, 4 mm</td>
<td>Height: 4 mm Ø: 5 mm</td>
<td>PEEK</td>
</tr>
</tbody>
</table>

RB Impression Taking

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Name</th>
<th>Dimension</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB36510</td>
<td>Zeramex XT Transfer Open Tray RB</td>
<td>High sleeve: 11 mm / height incl. screw: 20 mm</td>
<td>Aluminium PEEK-CW30</td>
</tr>
<tr>
<td>RB36512</td>
<td>Zeramex XT Transfer Closed Tray RB</td>
<td>High sleeve: 7 mm / height incl. screw: 14 mm</td>
<td>PEEK-CW30</td>
</tr>
<tr>
<td>RB36513</td>
<td>Zeramex XT Transfer Closed Tray, long RB</td>
<td>High sleeve: 11 mm / height incl. screw: 18 mm</td>
<td>PEEK-CW30</td>
</tr>
<tr>
<td>RB36514</td>
<td>Zeramex XT Scanbody RB (incl. screw)</td>
<td>Height: 10 mm PEEK PEEK-CW30</td>
<td></td>
</tr>
<tr>
<td>RB36522</td>
<td>Zeramex XT Digital Implant Replica RB</td>
<td>Length: 10 mm Aluminium</td>
<td>Vicarbo</td>
</tr>
</tbody>
</table>
SB/RB/WB Auxiliary Parts

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Name</th>
<th>Dimension</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>WB37514</td>
<td>Zeramex XT Scanbody WB (incl. screw)</td>
<td>Height: 10 mm</td>
<td>PEEK, PEEK-CW30</td>
</tr>
<tr>
<td>WB37522</td>
<td>Zeramex XT Digital Implant Replica WB</td>
<td>Length: 10 mm</td>
<td>Aluminium</td>
</tr>
</tbody>
</table>

Zeramex Docklocs®

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Name</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB15542</td>
<td>Zeramex Docklocs® Abutment, 2 mm</td>
<td>ZrO2, ATZ-HIP, Vicarbo</td>
</tr>
<tr>
<td>SB15543</td>
<td>Zeramex Docklocs® Abutment, 3 mm</td>
<td></td>
</tr>
<tr>
<td>SB15544</td>
<td>Zeramex Docklocs® Abutment, 4 mm</td>
<td></td>
</tr>
<tr>
<td>XT38227</td>
<td>Zeramex Docklocs® Insertion Instrument</td>
<td>Stainless steel, PEEK</td>
</tr>
</tbody>
</table>

Docklocs® Laboratory Set, up to 40° divergence compensation: 2 pcs zirconium oxide retention housing (Ø5.8 mm, height 2.5 mm) with black processing insert (height 1.9 mm), 2 pcs block-out ring, 2 pcs replacement male, green, 2 pcs replacement male, orange, 2 pcs replacement male, red.

Docklocs® Laboratory Set, up to 40° divergence compensation: 2 pcs titanium retention housing (Ø5.5 mm, height 2.5 mm) with black processing insert (height 1.9 mm), 2 pcs block-out ring, 2 pcs replacement male, green, 2 pcs replacement male, orange, 2 pcs replacement male, red.

SB/RB/WB Tools

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Name</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>P35601</td>
<td>Zeramex Rosedrill Ø2 mm</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>T35602</td>
<td>Zeradrill Pilot Ø2.3 mm</td>
<td></td>
</tr>
<tr>
<td>XT35630</td>
<td>Zeramex Profile Drill SB</td>
<td></td>
</tr>
<tr>
<td>T35608</td>
<td>Zeradrill 58 (Small 8 mm)</td>
<td>Stainless steel with carbon coating</td>
</tr>
<tr>
<td>T35610</td>
<td>Zeradrill 510 (Small 10 mm)</td>
<td></td>
</tr>
<tr>
<td>T35612</td>
<td>Zeradrill 512 (Small 12 mm)</td>
<td></td>
</tr>
</tbody>
</table>
Range

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T35614</td>
<td>Zeradrill S14 (Small 14 mm)</td>
</tr>
<tr>
<td>T35620</td>
<td>Zeratap Small Ø3.5 mm</td>
</tr>
<tr>
<td>T35622</td>
<td>Zeradrill Extension Small</td>
</tr>
<tr>
<td>T36608</td>
<td>Zeradrill R8 (Regular 8 mm)</td>
</tr>
<tr>
<td>T36610</td>
<td>Zeradrill R10 (Regular 10 mm)</td>
</tr>
<tr>
<td>T36612</td>
<td>Zeradrill R12 (Regular 12 mm)</td>
</tr>
<tr>
<td>T36614</td>
<td>Zeradrill R14 (Regular 14 mm)</td>
</tr>
<tr>
<td>T36620</td>
<td>Zeratap Regular Ø4.2 mm</td>
</tr>
<tr>
<td>T36622</td>
<td>Zeradrill Extension Regular</td>
</tr>
<tr>
<td>T37608</td>
<td>Zeradrill W8 (Wide 8 mm)</td>
</tr>
<tr>
<td>T37610</td>
<td>Zeradrill W10 (Wide 10 mm)</td>
</tr>
<tr>
<td>T37612</td>
<td>Zeradrill W12 (Wide 12 mm)</td>
</tr>
<tr>
<td>T37620</td>
<td>Zeratap Wide Ø5.5 mm</td>
</tr>
<tr>
<td>T37622</td>
<td>Zeradrill Extension Wide</td>
</tr>
<tr>
<td>C7650</td>
<td>Drill extension</td>
</tr>
</tbody>
</table>

Stainless steel with carbon coating

XT

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T38650</td>
<td>Zeramex T depth gauge, 4 pcs</td>
</tr>
<tr>
<td>XT38619</td>
<td>Zeramex Prosthetic Key, 19 mm</td>
</tr>
<tr>
<td>XT38623</td>
<td>Zeramex Prosthetic Key, 23 mm</td>
</tr>
<tr>
<td>XT38628</td>
<td>Zeramex Prosthetic Key, 28 mm</td>
</tr>
<tr>
<td>XT36620</td>
<td>Zeramex Pick-up, 20 mm SB/RB/WB</td>
</tr>
<tr>
<td>XT36625</td>
<td>Zeramex Pick-up, 25 mm SB/RB/WB</td>
</tr>
<tr>
<td>XT36622</td>
<td>Zeramex Rescue Pick-up SB/RB/WB</td>
</tr>
<tr>
<td>P48932</td>
<td>Zeramex P Ratchet Adapter Unit Short</td>
</tr>
<tr>
<td>P48935</td>
<td>Zeramex P Surgical Ratchet without Adapter</td>
</tr>
<tr>
<td>XT35651</td>
<td>Zeramex XT Drill Stop, for Small Drill</td>
</tr>
<tr>
<td>XT36651</td>
<td>Zeramex XT Drill Stop, for Regular Drill</td>
</tr>
<tr>
<td>XT37651</td>
<td>Zeramex XT Drill Stop, for Wide Drill</td>
</tr>
<tr>
<td>XT48860</td>
<td>Zeramex XT Prosthetics Kit</td>
</tr>
<tr>
<td>XT48865</td>
<td>Zeramex XT Prosthetics Kit incl. Ratchet</td>
</tr>
</tbody>
</table>
Docklocs® is a registered trademark of MEDEALIS GmbH, DE.
Santoprene® is a registered trademark of Exxon Mobil Corporation, USA.
General Information

Guarantee
Dentalpoint AG offers a lifelong guarantee for implants, and a 10-year guarantee for abutments and Vicarbo screws. Details of the guarantee can be found in the document “Zeramex Guarantee”.

Delivery and packaging
Delivery is in accordance with the general terms and conditions (T&Cs) of Dentalpoint AG. Intact, double-sterile packaging protects the implant from external influences and ensures sterile storage up to the printed expiration date. Zeramex XT implants and components must be stored dry in their original packaging at room temperature and protected from sunlight. Only open the packaging shortly before surgery. We recommend comprehensive clinical, radiological and statistical documentation. The inside labels (patient label) must allow traceability of the implants.

Exclusion of liability
Zeramex XT implants are part of an overall system and may be used only with the components designed for this system. Dentalpoint AG will not be held liable for any damage arising from improper use, or from using non-original components. The general terms and conditions of Dentalpoint AG also apply.

Training
For information on courses and further education for the Zeramex XT System, please contact us at www.zeramex.com.

Material properties
All implants and abutments are made from hot-densified zirconium oxide ATZ-HIP® (HIP = Hot Isostatic Postcompaction). For reasons of quality and strength, the implants and abutments are strictly machined into their final shape from solid, hard blanks using diamond-coated tools. The workpiece does not need finishing. This allows for highly precise and reproducible production of implants and abutments with the necessary precise fit.

Zerafil implant surface
- Microstructured
- Blasted and etched
- Hydrophilic

ZrO₂, ATZ-HIP
Zirconium dioxide, ATZ (alumina-toughened zirconia) (radiopaque)
Composition:
ZrO₂, 76%, Al₂O₃, 20%, Y₂O₃, 4%
Flexural strength: 2,000 MPa

ZrO₂, TZP-A
Zirconium dioxide, TZP (tetragonal zirconia polycrystal) (radiopaque)
Composition:
ZrO₂, 95%, Al₂O₃, 5%, Y₂O₃, 0.25%
Flexural strength: 1,200 MPa

PEEK CLASSIX
Polyether ether ketone USP Class VI (not radiopaque)

Aluminium
Aluminium (not radiopaque)

PEEK CLASSIX CW30 LSG
Short carbon fibres (CF) in a PEEK CLASSIX LSG matrix (not radiopaque)
Composition:
CF 30%, PEEK Classix LSG 70%
Flexural strength: >130 MPa

Vicarbo
Unidirectional carbon fibres (CF) in a PEEK matrix (not radiopaque)
Composition:
CF 60%, PEEK 40%
Flexural strength: >1,100 MPa.

Guarantee
Dentalpoint AG offers a lifelong guarantee for implants, and a 10-year guarantee for abutments and Vicarbo screws. Details of the guarantee can be found in the document “Zeramex Guarantee”.

Training
For information on courses and further education for the Zeramex XT System, please contact us at www.zeramex.com.

Material properties
All implants and abutments are made from hot-densified zirconium oxide ATZ-HIP® (HIP = Hot Isostatic Postcompaction). For reasons of quality and strength, the implants and abutments are strictly machined into their final shape from solid, hard blanks using diamond-coated tools. The workpiece does not need finishing. This allows for highly precise and reproducible production of implants and abutments with the necessary precise fit.

Zerafil implant surface
- Microstructured
- Blasted and etched
- Hydrophilic

ZrO₂, ATZ-HIP
Zirconium dioxide, ATZ (alumina-toughened zirconia) (radiopaque)
Composition:
ZrO₂, 76%, Al₂O₃, 20%, Y₂O₃, 4%
Flexural strength: 2,000 MPa

ZrO₂, TZP-A
Zirconium dioxide, TZP (tetragonal zirconia polycrystal) (radiopaque)
Composition:
ZrO₂, 95%, Al₂O₃, 5%, Y₂O₃, 0.25%
Flexural strength: 1,200 MPa

PEEK CLASSIX
Polyether ether ketone USP Class VI (not radiopaque)

Aluminium
Aluminium (not radiopaque)

PEEK CLASSIX CW30 LSG
Short carbon fibres (CF) in a PEEK CLASSIX LSG matrix (not radiopaque)
Composition:
CF 30%, PEEK Classix LSG 70%
Flexural strength: >130 MPa

Vicarbo
Unidirectional carbon fibres (CF) in a PEEK matrix (not radiopaque)
Composition:
CF 60%, PEEK 40%
Flexural strength: >1,100 MPa.

General Information

Guarantee
Dentalpoint AG offers a lifelong guarantee for implants, and a 10-year guarantee for abutments and Vicarbo screws. Details of the guarantee can be found in the document “Zeramex Guarantee”.

Training
For information on courses and further education for the Zeramex XT System, please contact us at www.zeramex.com.

Material properties
All implants and abutments are made from hot-densified zirconium oxide ATZ-HIP® (HIP = Hot Isostatic Postcompaction). For reasons of quality and strength, the implants and abutments are strictly machined into their final shape from solid, hard blanks using diamond-coated tools. The workpiece does not need finishing. This allows for highly precise and reproducible production of implants and abutments with the necessary precise fit.

Zerafil implant surface
- Microstructured
- Blasted and etched
- Hydrophilic

ZrO₂, ATZ-HIP
Zirconium dioxide, ATZ (alumina-toughened zirconia) (radiopaque)
Composition:
ZrO₂, 76%, Al₂O₃, 20%, Y₂O₃, 4%
Flexural strength: 2,000 MPa

ZrO₂, TZP-A
Zirconium dioxide, TZP (tetragonal zirconia polycrystal) (radiopaque)
Composition:
ZrO₂, 95%, Al₂O₃, 5%, Y₂O₃, 0.25%
Flexural strength: 1,200 MPa

PEEK CLASSIX
Polyether ether ketone USP Class VI (not radiopaque)

Aluminium
Aluminium (not radiopaque)

PEEK CLASSIX CW30 LSG
Short carbon fibres (CF) in a PEEK CLASSIX LSG matrix (not radiopaque)
Composition:
CF 30%, PEEK Classix LSG 70%
Flexural strength: >130 MPa

Vicarbo
Unidirectional carbon fibres (CF) in a PEEK matrix (not radiopaque)
Composition:
CF 60%, PEEK 40%
Flexural strength: >1,100 MPa.

Contact

Europe
Order hotline for Germany, Switzerland and Austria:
Tel. 00800 93 55 66 37
Fax 00800 93 55 63 77
order@zeramex.com

Zeramex Digital Solutions
Tel. 00800 04 00 13 33
digitalsolutions@zeramex.com

Head office
Dentalpoint AG
Bodenäckerstrasse 5
8957 Spreitenbach/Switzerland
T 0041 44 388 36 36
F 0041 44 388 36 39
info@zeramex.com
www.zeramex.com

German branch (EU sales)
Dentalpoint Germany GmbH
Wallbrunnstrasse 24
79539 Lörrach, Germany
Tel. +49 7621 1612 749
Fax +49 7621 1612 780
info@zeramex.com
www.zeramex.com

Global
You can find the contact details of all sales partners on our website www.zeramex.com/contact.

64
Zeramex
The future: naturally, white